This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, which survey more advanced topics, including some open problems in combinatorial topology. This textbook will serve a resource for experts in the field as well as for graduate students and others hoping to learn about these topics for the first time.
Eulerian Numbers is written by T. Kyle Petersen and published by Birkhäuser. The Digital and eTextbook ISBNs for Eulerian Numbers are 9781493930913, 1493930915 and the print ISBNs are 9781493930906, 1493930907.


Brain on Fire
Basics of the U.S. Health Care System
One hundred years of wartime nursing practices, 18541953
America Now, High School Edition: Short Readings from Recent Periodicals
Code of the Street: Decency, Violence, and the Moral Life of the Inner City
30 Life Principles Bible Study
A Flea in her Ear
Applied Law & Ethics for Health Professionals
Business in Action
Ben Hogan's Secret Fundamental: What He Never Told the World
ACSM's Complete Guide to Fitness & Health-2nd Edition
Clinical Anatomy and Physiology for Veterinary Technicians
Differential Equations For Dummies 
Review Eulerian Numbers
There are no reviews yet.