This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, which survey more advanced topics, including some open problems in combinatorial topology. This textbook will serve a resource for experts in the field as well as for graduate students and others hoping to learn about these topics for the first time.
Eulerian Numbers is written by T. Kyle Petersen and published by Birkhäuser. The Digital and eTextbook ISBNs for Eulerian Numbers are 9781493930913, 1493930915 and the print ISBNs are 9781493930906, 1493930907.


Around the Year with Emmet Fox
Building Codes Illustrated: A Guide to Understanding the 2015 International Building Code
Applied Math for Water Plant Operators
Brain on Fire
Assessment in Special and Inclusive Education
Clinical Anatomy and Physiology for Veterinary Technicians
Clash of the Generations: Managing the New Workplace Reality
Deconstructing Placemaking
Case Studies in Community Health
A Practical Handbook for the Actor
Beyond Combat
Century 21 Accounting: General Journal, Copyright Update
Ainsi parlait mon pre
80/20 Running
Intermediate Algebra for College Students 
Review Eulerian Numbers
There are no reviews yet.